Project Euler task 57
It is possible to show that the square root of two can be expressed as an infinite continued fraction.
2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...
By expanding this for the first four iterations, we get:
1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...
The next three expansions are 99/70, 239/169, and 577/408, but the eighth expansion, 1393/985, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.
In the first one-thousand expansions, how many fractions contain a numerator with more digits than denominator?
--------------------------------------------------------------------------
#include < iostream >
#include < string >
#include "BigIntegerLibrary.hh"
using namespace std;
int main() {
BigInteger iNom = 1;
BigInteger iDen = 2;
BigInteger iTemp = 0;
int iNumber = 0;
for (int i = 0; i < 1000; i++) {
if (bigIntegerToString(iDen + iNom).length() > bigIntegerToString(iDen).length())
iNumber++;
iTemp = iDen;
iDen = iDen * 2 + iNom;
iNom = iTemp;
}
cout << iNumber << endl;
return 0;
}
-------------------------------------------------------------------------------------
4 s 20 ms
Comments