Project Euler task 45
Triangle, pentagonal, and hexagonal numbers are generated by the following formulae:
Triangle | Tn=n(n+1)/2 | 1, 3, 6, 10, 15, ... | ||
Pentagonal | Pn=n(3n1)/2 | 1, 5, 12, 22, 35, ... | ||
Hexagonal | Hn=n(2n1) | 1, 6, 15, 28, 45, ... |
It can be verified that T285 = P165 = H143 = 40755.
Find the next triangle number that is also pentagonal and hexagonal.
---------------------------------------------------------------------------
#include < iostream >
#include < math.h >
using namespace std;
int main() {
long int x = 0;
for (int y = 1; y < 1000000; y++) {
long double fx = sqrt((long double) 3 * y * y - 2);
if (fx - floor(fx) > 0)
continue;
x = floor(fx);
long double fn = (fx + 1) / 6;
if (fn - floor(fn) > 0)
continue;
long double fm = ((double) y + 1) / 4;
if (fm - floor(fm) > 0)
continue;
long long int n = (x + 1) / 6; // pentagonal
cout << n * (3 * n - 1) / 2 << " : " << x << " " << y << endl;
}
return 0;
}
Comments